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Abstract. Soliton interactions in systems modelled by coupled nonlinear Schrödinger (CNLS) equations
and encountered in phenomena such as wave propagation in optical fibers and photorefractive media
possess unusual features: shape changing intensity redistributions, amplitude dependent phase shifts and
relative separation distances. We demonstrate these properties in the case of integrable 2-CNLS equations.
As a simple example, we consider the stationary two-soliton solution which is equivalent to the so-called
partially coherent soliton (PCS) solution discussed much in the recent literature.

PACS. 42.65.Tg. Optical solitons – 02.30.Ik. Integrable systems

1 Introduction

The study on the formation of optical solitons and their in-
triguing interaction properties is becoming one of the fron-
tier areas of research in nonlinear dynamics due to their
potential technological applications [1,2]. Indeed optical
solitons are becoming desirable candidates in long distance
optical communication systems, in optical devices and in
optical computers. In a mathematical sense these solitons
appear basically as solutions of integrable coupled non-
linear Schrödinger (CNLS) type equations. For example,
the intense electromagnetic wave propagation in a bire-
fringent fiber is governed by the following set of 2-CNLS
equations for the envelopes q1 and q2, which is in general
nonintegrable,

iq1z + q1tt + 2µ(|q1|2 + B|q2|2)q1 = 0,

iq2z + q2tt + 2µ(|q2|2 + B|q1|2)q2 = 0, (1)

where z and t represent the normalized distance along the
fiber and the retarded time respectively, µ represents the
strength of nonlinearity and B = 2+2 sin2 θ

2+cos2 θ is the cross
phase modulation coupling parameter (θ: ellipticity an-
gle). However this system becomes integrable for B = 1.
The resulting set of equations

iq1z + q1tt + 2µ(|q1|2 + |q2|2)q1 = 0,

iq2z + q2tt + 2µ(|q1|2 + |q2|2)q2 = 0, (2)
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is the celebrated Manakov equation [3]. In a recent work
Radhakrishnan et al. [4] have revealed the fact that the
soliton solutions of the integrable 2-CNLS (Manakov)
equations undergo a fascinating shape-changing collision,
resulting in a redistribution of intensity between the two
solitons in the two modes, which is not observed in the
scalar nonlinear Schrödinger (NLS) equation which ex-
hibits only pure elastic collision without any redistribu-
tion of intensities of solitons. Consequently, Jakubowski
et al. [5] have pointed out the possibility of using this
phenomenon in constructing logic gates and in a very re-
cent work [6] Steiglitz constructed such gates including
the universal NAND gate, thereby showing the theoretical
possibility of constructing all optical computers without
interconnecting discrete components in a homogeneous
bulk nonlinear optical medium. Also Yang [7] has stud-
ied the effect of additional perturbations on these solitons
using perturbation theory. Further such integrable CNLS
equations arise in the context of spatial solitons as well
which are receiving renewed attention for their formation
at very low optical powers in photorefractive medium [8].
The present authors have extended the results of 2-CNLS
system to 3- and N-CNLS equations [9].

All the above investigations mostly concentrate on the
effect of changes in the amplitude (polarization) and the
consequent effect on the energy redistribution between the
modes of the solitons. So far not much attention has been
paid to the role of phases during optical soliton interac-
tion. In this report, we point out the significance of ampli-
tude dependent phase shift / relative separation distance
involved in the interaction process (Sect. 2) responsible for
the shape change of solitons during collision along with the
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changes in the amplitudes (polarization) of the modes in
the Manakov system. It may be noted that such amplitude
dependent phase shifts do not occur in the case of scalar
NLS equation. As a simple example, we consider (Sect. 3)
the role of phase shifts / relative separation distances for
stationary 2-soliton case and point out that this solution
is nothing but the so-called stationary partially coherent
soliton (PCS) in the recent literature [10].

2 Soliton interaction in 2-CNLS system

To start with let us consider briefly the nature of one-
and two-soliton solutions [4,11]. Multisoliton solutions of
CNLS equations and their interactions will be considered
elsewhere [12].

2.1 One-soliton solution

The one-soliton solution to equation (2) can be given
in terms of three arbitrary complex parameters α

(1)
1 ,α(2)

1
and k1 as [4,11]

(
q1

q2

)
=

(
α

(1)
1

α
(2)
1

)
eη1

1 + eη1+η∗
1+R

, (3)

=
(

A1

A2

)
k1Reiη1I

cosh (η1R + R
2 )

, (4)

where ηi = ki(t + ikiz), i = 1, where ki = kiR + ikiI , kiR

and kiI represent the real and imaginary parts of ki. Here
√

µ(A1, A2) = (α
(1)
1 ,α

(2)
1 )�

|α(1)
1 |2+|α(2)

1 |2
represents the unit polariza-

tion vector, k1RAj , j = 1, 2 gives the amplitude of the jth
mode and 2k1I is the soliton velocity.

2.2 Two-soliton solution

Introducing six complex parameters α
(1)
1 , α

(1)
2 , α

(2)
1 , α

(2)
2 ,

k1 and k2, the two-soliton solution can be given as [4,11]

q1 =
α

(1)
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(1)
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D
,
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α
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(2)
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where
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0
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Here

ηi = ki(t + ikiz), eδ0 =
κ12

k1 + k∗
2

, eRj =
κjj
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j

,
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and κij =
µ(α(1)

i α
(1)∗
j + α

(2)
i α

(2)∗
j )

ki + k∗
j

, i, j = 1, 2.

The above two-soliton solution represents the interaction
of two coupled one solitons. The scenario behind this inter-
action is that there is an intensity redistribution among
the two modes of the two solitons along with an ampli-
tude dependent phase shift and relative separation dis-
tance [4,9,11]. In order to understand the nature of the
collisions we can consider the following cases for k1I>k2I :
(a) k1R > 0, k2R > 0 (b) k1R > 0, k2R < 0 (c)
k1R < 0, k2R > 0 (d) k1R < 0, k2R < 0. Similarly, one
can consider four cases for k1I < k2I . In all these cases
an asymptotic analysis (z → ±∞) reveals the following
structures.

1) Limit z → −∞
(a) Soliton 1:(

q1

q2

)
→
(

A1−
1

A1−
2

)
k1Reiη1I sech

(
η1R + φ̂1−

)
, (6)

(b) Soliton 2:(
q1

q2

)
→
(

A2−
1

A2−
2

)
k2Reiη2I sech

(
η2R + φ̂2−

)
. (7)

2) Limit z → +∞
(a) Soliton 1:(

q1

q2

)
→
(

A1+
1

A1+
2

)
k1Reiη1I sech

(
η1R + φ̂1+

)
, (8)

(b) Soliton 2:(
q1

q2

)
→
(

A2+
1

A2+
2

)
k2Reiη2I sech

(
η2R + φ̂2+

)
. (9)

Here the various quantities corresponding to the four cases
for k1I>k2I are given below.
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Case (a) k1R > 0, k2R > 0:

(
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2 ·

Case (b) k1R > 0, k2R < 0:
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Case (c) k1R < 0, k2R > 0:
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2 ·
In both the cases (b) and (c) l = j + (−1)j+1, j = 1, 2.

Case (d) k1R < 0, k2R < 0:
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2 ·
In equations (6–21) the superscripts denote the solitons
and the subscripts denote the modes. It is clear from the

above expressions that in all the cases there exists a re-
distribution of intensity among the solitons. However it
should be noticed that though there is an intensity re-
distribution among the solitons in two modes, the total
intensity of individual soliton is conserved during collision
process, that is, |Aj−

1 |2 + |Aj−
2 |2 = |Aj+

1 |2 + |Aj+
2 |2 = 1

µ ,
j = 1, 2, which is of course a consequence of the integra-
bility of the Manakov model. For example, the amplitude
change in the two modes of soliton 1 after interaction can
be expressed by the following transformation,

A1+
1 = ΓC11A

1−
1 + ΓC12A

1−
2 ,

A1+
2 = ΓC21A

1−
1 + ΓC22A

1−
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2) + α
(2)
2 α

(2)∗
2 (k1 − k2). Note that

Cij ’s are independent of α
(j)
1 ’s and so of A1−

1 and A1−
2 .

Similar relations for the soliton 2 hold good for A2+
1

and A2+
2 also. Then the ratios of the Aj

i ’s, i, j = 1, 2,
can be connected through linear fractional transforma-
tions (LFTs). For example, for soliton 1,

ρ+
1 =

A1+
1

A1+
2

=
C11ρ

−
1 + C12

C21ρ
−
1 + C22

, (23)

where ρ1=
A1−

1

A1−
2

, ensuring that for every transformation
there exists an inverse transformation. This idea has been
profitably used in constructing logic gates [5,6]. In fact the
LFT (23) is identical to the LFT given by equation(9) in
reference [5] under the change of notation ρ−1 →ρ1, ρ+

1 →ρR

with Cij ’s identified as the expressions given therein.
Further, it is observed that the absolute value of the

phase shift of the two solitons in all the above four cases
is same and is given by

|Φ| =
|R3 − R1 − R2|

2
,

=
1
2
log
[ |k1 − k2|2(|κ11κ22 − κ12κ21|)

|k1 + k∗
2 |2κ11κ22

]
,

=
1
2
log
[ |k1 − k2|2
|k1 + k∗

2 |4
]

+
1
2
log
[
κ̄11κ̄22|k1 + k∗

2 |2 − |κ̄12|2(k1 + k∗
1)(k2 + k∗

2)
κ̄11κ̄22

]
,

(24)
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where κ̄ij = µ(α(1)
i α

(1)∗
j + α

(2)
i α

(2)∗
j ), i, j = 1, 2 and the

absolute value of the change in relative separation distance
t±12 (position of S2 (at z → ±∞) - position of S1 (at z →
±∞)) is given by

|∆t12| = |t−12 − t+12| =
∣∣∣∣ (k1R + k2R)

k1Rk2R

∣∣∣∣ |Φ|. (25)

It is interesting to note that in the collision process the
phase shift is not only dependent on the kj ’s, j = 1, 2 but
also on the complex parameters α

(j)
i ’s, i, j = 1, 2, and so

on Aj
i ’s. These two properties, that is, dependence of the

change in the intensity profiles of the solitons in the two
modes and of the phase shift of them during collision on
the parameters α

(j)
i ’s make the collision properties novel,

not seen in general other standard (1 + 1) dimensional
soliton systems.

Now looking at the dependence of the phase shift on
α

(j)
i ’s, we can consider two special cases.

Case (a): α
(1)
1 : α

(1)
2 = α

(2)
1 : α

(2)
2 .

In this case(corresponding to parallel modes) the collision
correspond to pure elastic collision (|Aj+

i | = |Aj−
i |,

i, j = 1, 2) and the phase shift is given by

|Φ| =
∣∣∣∣log

[ |k1 − k2|2
|k1 + k∗

2 |2
]∣∣∣∣ · (26)

Case (b): α
(1)
1 : α

(1)
2 = ∞, α

(2)
1 : α

(2)
2 = 0.

This case corresponds to two orthogonal modes. Here the
phase shift is given by

|Φ| =
∣∣∣∣log

[ |k1 − k2|
|k1 + k∗

2 |
]∣∣∣∣ · (27)

These two examples show that the phase shifts and hence
the relative separation distances (see Eq. (25)) vary as
the complex parameters α

(j)
i ’s change and this variation

will be reflected in the shape of the profiles of the two
interacting solitons.

3 Stationary solitons and relative separation
distances

In order to realize the effect of phase shift on the shape
of the solitons we consider the simple case of stationary
limit of the two-soliton solution (5). Let us consider the
situation in which the velocities are zero, that is kjI = 0,
j = 1, 2. Further we choose α

(1)
2 = α

(2)
1 = 0, α

(1)
1 = eη10 ,

α
(2)
2 = −eη20 and knI = 0, where ηi0, i = 1, 2 are real

parameters (corresponding to orthogonal modes). In this

limit, the two-soliton solution (5) reduces to

q1 = 2k1R

√
k1R + k2R

k1R − k2R
cosh(k2R t̄2)eik2

1Rz/D1, (28)

q2 = 2k2R

√
k1R + k2R

k1R − k2R
sinh(k1R t̄1)eik2

2Rz/D1 (29)

D1 =
√

µcosh(k1R t̄1 + k2R t̄2) +
√

µ

(
k1R + k2R

k1R − k2R

)

×cosh(k1R t̄1 − k2R t̄2), (30)

t̄1 = t − t1 = t +
η10

k1R
+

1
2k1R

log
[

µ(k1R − k2R)
4k2

1R(k1R + k2R)

]
,

(31)

t̄2 = t − t2 = t +
η20

k2R
+

1
2k2R

log
[

µ(k1R − k2R)
4k2

2R(k1R + k2R)

]
,

(32)

so that each soliton is in one particular mode.
It is also of interest to note that the stationary limit

of the two-soliton solution obtained above is also the
so-called partially coherent stationary soliton studied
in the literature intensively in recent times [8,10] in
connection with the existence of spatial solitons in
photorefractive materials. In fact equations (28–32) are
nothing but the stationary 2-PCS solution obtained in
equations (13–15) in reference [10]. Now we can identify
the relative separation distance between the solitons as

t12 = t2 − t1 =
η10

k1R
− η20

k2R
+

1
2k1R

log
[

µ(k1R − k2R)
4k2

1R(k1R + k2R)

]

− 1
2k2R

log
[

µ(k1R − k2R)
4k2

2R(k1R + k2R)

]
· (33)

It can be very easily seen that the shape of the stationary
soliton depends very much on the relative separation dis-
tance t12. To illustrate this in Figure 1 we have plotted (i)
symmetric case t12 = 0 and (ii) asymmetric case t12 �= 0.
One can proceed to consider the propagation of the above
stationary soliton solution and check their shape changing
properties under collision. Choosing the parameters α

(2)
1

and α
(1)
2 as functions of velocities (kjI) such that they

vanish when kjI = 0, j = 1, 2, the nature of soliton col-
lisions is shown in Figure 2 for the parameters α

(1)
1 =

1.0, α
(2)
1 = 1.0, α

(1)
2 = 22+80i

89 , α
(2)
2 = −2.0, k1 = 1.0 + i

and k2 = 2.0 − i.

4 Conclusion

The soliton interactions in CNLS equations possess very
rich structure. In this paper, we have discussed the two-
soliton interaction properties of 2-CNLS equations with
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Fig. 1. Typical stationary form of the 2-soliton solution (PCS) for the 2-CNLS system for z = 0, see equations (28–32):
(a) symmetric case (t12 = 0), (b) asymmetric case (t12 = 1.0).
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Fig. 2. Asymptotic forms of two-soliton solution (whose stationary form is similar to Fig. 1) of the integrable 2-CNLS equations
(a) at z = −2 and (b) at z = 2.

special emphasis on the nature of phase-shift encountered
by solitons under collision and its dependence on the am-
plitudes of the modes. We have also pointed out that the
much discussed stationary PCS solitons correspond to sta-
tionary limit of appropriate soliton solutions with 2-PCS
as an example here. Because of the complex nature of
soliton interaction, multisoliton solution in multicompo-
nent systems possess highly nontrivial structures. These

properties will be presented separately [12]. Such studies
are expected to have very important application in optical
communications, optical devices and optical computing.
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